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Abstract

Physician burnout is an important problem in the medical profession. Administra-
tive tasks have been linked to physician burnout with physician Electronic Health
Record keeping being one of the major administrative tasks physicians engage in.
In the existing literature, researchers have leveraged doctor-patient conversations
to predict patient diagnosis, symptoms, and medication regiment in an effort to
alleviate some of the burden of note taking for physicians. Using the unprocessed
doctor-patient conversations repeatedly leads to worse model performance than us-
ing a subset of the conversations. In this paper we use state of the art classification
models to predict noteworthy sentences from doctor-patient conversations. We find
the most significant improvements when adding context to a RCNN model as well
as fine-tuning a BERT pre-trained model. We were able to achieve a 3% increase
from our 69% logistic regression baseline accuracy for this binary classification
task. We believe we have laid a foundation for future research trying to predict
noteworthy utterances from unfiltered doctor-patient conversations and hope further
improvements can be made upon our findings so far.

Introduction

A serious issue in today’s medical profession is physician burnout. One of the main tasks a physician
works on during a day is record keeping of patient diagnosis, illnesses or general prognosis. In
particular, physicians have to enter patient relevant information into an Electronic Health Record
(EHR) for each patient visit; for each half an hour patient visit a physician spends about 22 minutes
entering the relevant patient information into the EHR [12]. The significant time doctors spend on
administrative tasks such as EHR keeping is positively correlated with physician burnout [3, 8] and
in the United States 50% of physicians report experiencing burnout at their job [6]. The extensive
EHR keeping could be a main driver of physician burnout and alleviating physician note taking could
significantly decrease physician burnout and improve physician mental heath.
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University of Pittsburgh Medical Center (UPMC) and Abridge Al Inc. for providing de-identified, annotated
doctor-patient conversations.



(count) Sentences (count) Noteworthy Sentences

(1) “I take it during the day.” (1) “I take it during the day.”

(2) “Okay.”
(3) “And I take 1 tablet and I think it’s better be- | (2) ‘And I take 1 tablet and I think it’s better be-
cause I used to take 3 tablets.” cause I used to take 3 tablets.”

(4) “Right.”

(5) “So I'm down to 1 and hopefully it’s making
my diabetes do better.”
(6) “Yes, I hope so too.”

Table 1: Example Dialogue Illustrating Redundancy in Conversation. We have altered the wording of
these sentences to comply with the dataset policy and agreements.

In the recent literature there has been a surge of interest in trying to alleviate this note-taking
process from physicians by using doctor-patient conversations to predict and extract EHR relevant
information such as patient diagnosis [5], medication regiment (i.e. the medication a patient has to
take and how frequently) [11], and symptoms [10]. A repeated challenge in extracting important
information from doctor-patient conversations is the data. In particular, not only is the data hard
to come by, but moreover, even when the data is accessible, doctor-patient conversations are long
and noisy. Each conversation has around 1500 words and often contains redundancies, informal
conversation as well as complex technical jargon (see Table 1). Using this data directly as input to
an encoder [11] or a BERT neural net [5] has been shown to yield worse performance than using
a subset of the doctor-patient conversations when trying to predict patient diagnosis, medication
regiment or symptoms. In the extant literature, a lot of focus has been on extracting useful information
from doctor-patient conversations such as medication regiment as well as diagnoses, among others.
However, currently no research exists on trying to extract important subsets of the entire doctor-patient
conversations to be used as input into the main diagnosis or symptom prediction model. Using a
subset of already extracted noteworthy sentences from doctor-patient conversations has been shown to
improve these model’s performances. In this paper we focus on extracting noteworthy sentences from
unfiltered doctor-patient conversations, a crucial step lying in between using the raw doctor-patient
conversations to make filtered physician EHR notes.

The dataset we use for this task is a corpus of 6,693 real doctor-patient conversations recorded
with patient’s consent. In addition, the dataset is annotated by medical annotation experts and
important (or, “noteworthy”’) sentences have been extracted. We formulate the problem of predicting
these noteworthy sentences as a binary classification problem and use simple learning models as well
as a battery of state of the art task classification models to predict noteworthy sentences. In particular,
as a first baseline, we use a logistic regression akin to that used by Krishna et al. [5] and replicate
their results. In addition to implementing a neural net baseline, we also implement a CNN, RCNN, as
well as a pre-trained and fine-tuned BERT model. We find the best performance with our pre-trained
BERT models, achieving a 3% increase in accuracy over the logistic regression baseline.

Dataset

Our dataset consists of de-identified transcripts of real doctor-patient conversations accompanied
by medical annotation expert’s notes that annotate the important sections of the doctor-patient
conversation.

Each conversation has an average length of 9m 28s. The average word count of a conversation
is 1500 words, and there are around 200-250 utterances in each conversation. The conversations are
inherently noisy due to the noisiness of natural conversation. Specifically, there are a lot of redundant
phrases such as “uhmm” and “okay” (see Table 1), cut off sentences, and small talk. There are a
total of 6,693 conversations including 2732 cardiologist visits, 2731 family medicine visits, 989
interventional cardiologist visits, and 410 internist visits. The data has been de-identified by replacing
personal information with digital zeros and [de-identified] tags.



Every conversation, or transcript, has been professionally annotated by a medical annotation
expert. The notes taken by medical experts follow a SOAP note format and are broken down into the
following categories: Subjective, Objective, Assessment and Plan. The SOAP notes mimic the usual
notes a medical expert would make (e.g. write a short description of the diagnosis) and annotate the
transcript with where the evidence for the notes came from. For example, the Objective category
records events such as lab tests that may have been performed on the patient. If bloodwork had been
performed on the patient, the Objective category would include a “Bloodwork” tag with a timestamp
corresponding to the respective tag. Further, it would also include the free form note a doctor would
make: “Laboratory workup”, with a list of timestamps that contributed to the complete note.

We will predict two different types of noteworthy utterances: All-Noteworthy (AN) and
Diagnosis-Noteworthy (DN) utterances.

o All-Noteworthy utterances (AN): utterances used as evidence in the SOAP notes

e Diagnosis-Noteworthy utterances (DN): utterances used as evidence for an entry in the
SOAP notes that contains the ground truth for the diagnosis of the patient

By using both an indiscriminate and a tailored approach to selecting the data, we are able to gain more
insight into how well the model can generalize. Our final dataset thus contains a list of utterances (or
sentences) in one column, and whether it was noteworthy or not indicated by a 1 or 0, respectively, in
the next column.

Methods

Text classification is the task of categorizing a text document into a set of pre-defined categories based
on its keywords or content. In NLP and related fields, text classification has been widely used to aid
in tasks like topic labeling and sentiment analysis. We find that our problem of predicting noteworthy
sentences from our dataset of doctor-patient conversations lends itself to a text classification approach
in which the goal is to classify sentences as either being “noteworthy” or “not noteworthy”. In what
follows, we first describe the two baseline models we implemented. Thereafter, we delve into more
sophisticated approaches we used such as an RNN, RCNN and a pre-trained BERT model.

Baselines

For all the baseline datasets, we computed the term frequency-inverse document frequency (TF-
IDF). In particular, we compute the TD-IDF scores for each sentence with respect to all other
sentences in the dataset, respectively, for each the train, validation and test dataset. Thus, both the
logistic regression (LR) and neural net (NNet) baselines are run using the TD-IDF training data
representations to classify the sentence importance.

We re-implemented the method for automated noteworthy utterance retrieval using logistic
regression as was used in Krishna et al. [5]. In particular, we use exactly the same parameters as
Krishna et al. [5]: a limited-memory Broyden—Fletcher—Goldfarb—Shanno (Ibfgs) solver with 250
epochs and no L2 regularization.

We also implemented a baseline multi-layer neural net with the the following dimensions for
it’s hidden layers: (128, 256, 512, 1024, 1024, 1024, 512, 256). Each layer used ReLLU activation
functions; an initial starting learning rate of le-3 was used with no learning rate scheduler. We used
Adam to optimize the model, with L2 regularization weight of le-4, and first and second momentum
decay rate weights of 0.9 and 0.999 respectively. We use no other regularization such as batch
normalization or dropout and run the model for a total of 10 epochs.

RNN

Our first serious model was a simple Recurrent Neural Network (RNN) model. Instead of using the
TF-IDF embeddings as inputs to our model, we use a pre-trained GloVe dictionary of size 50. The
model consists of an embedding layer of size 50 followed by three bidirectional Long Short-Term
Memory (LSTM) layers of size 256 each. We pad and pack our sequences before feeding them into
our LSTMs and finally feed into two linear layers. The first linear layer is of size (512, 512) and the
final linear layer which outputs the logits is of size (512, 2).
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Figure 1: RCNN from Lai et al. [7]

To optimize our model we utilize an Adam optimizer and minimize cross entropy loss. The
Adam optimizer is set to an initial learning rate of 1e-3 with weight decay of 1e-5. We do not use a
learning rate scheduler and train for a total of 20 epochs.

RCNN

We implement a successful approach to text classification that was developed by Lai et al. [7] in
which they implement a Recurrent Convolutional Neural Network (RCNN). A Recurrent Neural
Network (RNN) is useful for being able to store information from previous input text in a context
layer. At the same time, a Convolutional Neural Network (CNN) may be able to better learn the
semantics of the text but is not usually suitable for context-sensitive data. Lai et al. find a hybrid of
the two to be successful given the nature of the text classification task as the hybrid model allows
to both preserve context and identify the key sub-features of our text. In particular, first the authors
utilize a bi-directional recurrent structure to capture both past and future information for learning the
text representations. Thereafter, the authors feedforward through a CNN max-pooling layer. Because
we suspect that particular words may be more indicative of a noteworthy classification in our task,
the convolutional layer may be particularly useful in identifying the key words.

We apply this model to our current task of predicting noteworthy utterances. In particular, we
utilize three bidirectional-LSTM layers of size 256. The output from the LSTMs are concatenated
with the original input into a linear layer of size 256 and fed into a Tanh activation layer. Finally,
the result is passed through a max-pooling layer and a final linear layer to classify it into two output
classes (0 = not-noteworthy, 1 = noteworthy). During training, we utilize an Adam optimizer to
minimize cross entropy loss.

We improve upon the RCNN from Lai et al. by incorporating sentence level context into our
model. In particular, we found that neighboring sentences were naturally highly related to one another
and including information from the context of an input sentence may help to increase accuracy. Thus,
we concatenated ¢ number of sentences from before and after a particular input as the input to our
model, where ¢ was a hyper-parameter we tuned. In our final RCNN model, we ended up using the
value ¢ = 2.

In addition, we applied pre-trained GloVe word embeddings of size 300 to learn more complex
vector representations of the input sentences. We also added regularization techniques including
locked dropout between bi-LSTM layers and embedding dropout as well as a learning rate scheduler
initialized to le-3.

BERT

We also utilized Bidirectional Encoder Representations from Transformers (BERT), which is a pre-
trained network from Google that uses the transformer architecture [4]. The transformer architecture
is able to avoid the sequential nature of RNNs and process the attention of the input sequence at
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Figure 2: BERT Single Sentence Classification [4]

once. It does so by computing multiple attention values based on different metrics, a mechanism
known as multi-head attention. The attention values are calculated through matrix multiplications and
can be computed simultaneously, making transformers far more suited for parallel computation than
traditional mechanisms of processing language like RNNs. BERT has been pre-trained on a large
number of examples, giving it the ability to represent more intricate relationships within a language.
As a result, fine-tuning BERT has been successful in many language understanding tasks. By adding
a linear classifying layer on top of BERT, it can be used for a variety of different classification tasks.
We used a module called "BERT for Sequence Classification" from HuggingFace, where we were
able to designate two desired labels, noteworthy and not-noteworthy, and fine tune the model for our
data. We used "Clinical BERT", which is a BERT network that had been trained specifically for the
medical industry using clinical terms [1]. We trained the network for 1 epoch with batch size 32 and
maximum sequence lengths 128 and 200.

We improve upon single sentence classification with BERT by incorporating sentence level
context. By feeding in neighboring sentences, BERT is better able to understand the context from
the dialogue surrounding the input sentence, resulting in greater accuracy. Like in the RCNN, we
concatenated c sentences before and after the particular input sentence, and in our final model we
used ¢ = 1 for BERT.

We initially investigated applying a LSTM network on top of BERT, using the encoding values
from BERT as inputs to the LSTM. We quickly discovered that BERT was not intended to be used as
a simple embedding layer, and was powerful enough to be a standalone network. The performance
results from the added LSTM network were poor, and we quickly transitioned into fine tuning the
BERT for Sequence Classification network.

Results

Metrics

We use three main metrics to evaluate the performance of our models: accuracy, F1 score, and area
under the receiver-operator characteristics (AUC).

Baselines

The logistic regression baseline scores are given in Table 2. We were able to closely replicate the
results found in Krishna et al. [5]. In addition, we found that a simple MLP baseline performed
slightly worse compared to our logistic regression baseline.



RNN/RCNN

On the AN dataset, we were able to see a slight improvement over our MLP baseline using a
simple RNN. By adapting the RCNN model from Lai et al. [7] as well as scaling up our GloVe
word embeddings, we were able to see additional improvements over the simple RNN achieving
an accuracy of 0.7032. The most significant improvements in our model performance were found
when we added sentence level context. Specifically, when we added two sentences before and after
our current sentence, we saw a more than 1 percentage point improvement over our RCNN without
context, achieving an accuracy of 0.7159.

BERT

In our BERT models we see a similar story; adding sentence level context was crucial to increasing
our model performance and we were able to achieve our best results with BERT with sentence level
context. For classifying the AN dataset, our best accuracy of 0.7242 came with BERT with maximum
sequence length of 200. For classifying the DN dataset, our best accuracy of 0.8303 came with
BERT with maximum sequence length of 128. We investigated longer maximum sequence lengths
and smaller batch sizes but this proved to be too memory-intensive. We were able to achieve the
highest F1 scores using BERT as well, with 0.5941 for AN and 0.2722 for DN on BERT with a
maximum sequence length of 128. We were not able to surpass the AUC score of 0.6917 achieved by
the Logistic Regression baseline with any of our models, but BERT came the closest with 0.6836.

Model | Accuracy | F1 | AUC

AN:
Logistic Regression Baseline 0.6990 0.4486 | 0.6917
NNet Baseline 0.6764 0.4317 | 0.6302
RNN 0.6976 0.4795 | 0.6314
RCNN 0.7032 0.4516 | 0.6224
RCNN w/ context 0.7159 0.5056 | 0.6412
BERT 0.6999 0.5057 | 0.6411

BERT w/ context & max seq len 128 | 0.7057 0.5941 | 0.6836
BERT w/ context & max seq len 200 | 0.7242 0.5342 | 0.6615
DN:
Logistic Regression Baseline 0.8183 0.1284 | 0.6600
NNet Baseline 0.7828 0.2481 | 0.5748
BERT w/ context & max seq len 128 | 0.8303 0.2722 | 0.5750
BERT w/ context & max seq len 200 | 0.8299 0.2171 | 0.5570
Table 2: Results of Models. AN: predicted all noteworthy sentences. DN: predicted diagnosis
noteworthy sentences.

Discussion

The results present two insights that were crucial for getting our best performances: (1) pre-trained
BERT and (2) sentence level context.

Pre-trained BERT models have repeatedly been shown to improve model performance and the
same holds true in our medical text classification task. Our best BERT models outperformed our
RCNN by about 1 percentage point in the AN dataset, and these strong results generalize to the DN
dataset. It is worth noting however that for the larger AN dataset having a sequence length of 200
improved performance significantly compared to a sequence length of 128, while for the smaller DN
dataset both a sequence length of 128 and 200 perform comparably. Thus, having a larger sequence
length seems to improve generalizability. That being said, although we achieved our best results
with the BERT model, we felt that there was still room for improvement. With our implementation,
increasing our maximum sequence length (to more than 200) to account for larger sentences and
contexts would likely provide improvements similar to the improvement seen by increasing it from
128 to 200. As discussed in Sun [2], BERT fine-tuning for text classification can be improved through
more pre-training and fine-tuning strategies. Performing some further pre-training of Clinical BERT



on the text corpora at hand, which is unique in that it is comprised solely by dialogue, would be a
good next step.

Our results highlight the importance of adding context. In the RCNN with context we found
that the optimal performance was achieved when we added 2 sentences before and after our current
sentence. However, in BERT we found that only 1 sentence on each side resulted in the best
performance. Thus, overall, while sentence level context was very important, the optimal amount of
context varies across implementations.

In future research, researchers should strongly consider using pre-trained models. In particular
other pre-trained models such as ELMo [9] present a natural next step. In addition, future work
should aim to train the feature extraction and text classifications tasks separately as well as explore
potential novel approaches to this problem such as applying GANs.

Conclusion

In conclusion, we tried a lot of different approaches given the two month time horizon for this project:
starting all the way from the beginning in trying to get our hands on this unique dataset to running a
series of fine-tuning experiments using pre-trained BERT models. That being said, given our task
of binary text classification, achieving an accuracy of about 72% with a pre-trained model such as
BERT is low. We attribute the difficulty of increasing this score mainly to the inherent noisiness of
doctor-patient conversations. In particular, doctor-patient conversations are riddled with non-patient
examining small talk which is dispersed at random intervals. We hope this project has laid the
foundation for future research trying to help alleviate physician burnout by predicting noteworthy
utterances from doctor-patient conversations. Future research may take from the insights gained
in this project; concretely that both using a pre-trained model and adding context are important to
improving model performance.
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